non-abelian, soluble, monomial
Aliases: C32⋊Q32, C4.3S3≀C2, (C3×C6).3D8, (C3×C12).7D4, C2.5(C32⋊D8), C32⋊2Q16.C2, C32⋊2C16.2C2, C32⋊4C8.3C22, SmallGroup(288,384)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C32⋊4C8 — C32⋊Q32 |
C1 — C32 — C3×C6 — C3×C12 — C32⋊4C8 — C32⋊2Q16 — C32⋊Q32 |
C32 — C3×C6 — C3×C12 — C32⋊4C8 — C32⋊Q32 |
Generators and relations for C32⋊Q32
G = < a,b,c,d | a3=b3=c16=1, d2=c8, ab=ba, cac-1=dad-1=b, cbc-1=a-1, dbd-1=a, dcd-1=c-1 >
Character table of C32⋊Q32
class | 1 | 2 | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 4 | 4 | 2 | 24 | 24 | 4 | 4 | 18 | 18 | 8 | 8 | 24 | 24 | 24 | 24 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ8 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ167+ζ16 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ9 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ165-ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ10 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ165+ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ11 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ167-ζ16 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ12 | 4 | 4 | 1 | -2 | 4 | 0 | -2 | 1 | -2 | 0 | 0 | -2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ13 | 4 | 4 | 1 | -2 | 4 | 0 | 2 | 1 | -2 | 0 | 0 | -2 | 1 | 0 | -1 | 0 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ14 | 4 | 4 | -2 | 1 | 4 | -2 | 0 | -2 | 1 | 0 | 0 | 1 | -2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | 4 | -2 | 1 | 4 | 2 | 0 | -2 | 1 | 0 | 0 | 1 | -2 | -1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 1 | -2 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 2 | -1 | 0 | -√-3 | 0 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ17 | 4 | 4 | -2 | 1 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | -1 | 2 | -√-3 | 0 | √-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ18 | 4 | 4 | -2 | 1 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | -1 | 2 | √-3 | 0 | -√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ19 | 4 | 4 | 1 | -2 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 2 | -1 | 0 | √-3 | 0 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ20 | 8 | -8 | -4 | 2 | 0 | 0 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ21 | 8 | -8 | 2 | -4 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(2 25 61)(4 63 27)(6 29 49)(8 51 31)(10 17 53)(12 55 19)(14 21 57)(16 59 23)(34 90 78)(36 80 92)(38 94 66)(40 68 96)(42 82 70)(44 72 84)(46 86 74)(48 76 88)
(1 24 60)(3 62 26)(5 28 64)(7 50 30)(9 32 52)(11 54 18)(13 20 56)(15 58 22)(33 89 77)(35 79 91)(37 93 65)(39 67 95)(41 81 69)(43 71 83)(45 85 73)(47 75 87)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 78 9 70)(2 77 10 69)(3 76 11 68)(4 75 12 67)(5 74 13 66)(6 73 14 65)(7 72 15 80)(8 71 16 79)(17 41 25 33)(18 40 26 48)(19 39 27 47)(20 38 28 46)(21 37 29 45)(22 36 30 44)(23 35 31 43)(24 34 32 42)(49 85 57 93)(50 84 58 92)(51 83 59 91)(52 82 60 90)(53 81 61 89)(54 96 62 88)(55 95 63 87)(56 94 64 86)
G:=sub<Sym(96)| (2,25,61)(4,63,27)(6,29,49)(8,51,31)(10,17,53)(12,55,19)(14,21,57)(16,59,23)(34,90,78)(36,80,92)(38,94,66)(40,68,96)(42,82,70)(44,72,84)(46,86,74)(48,76,88), (1,24,60)(3,62,26)(5,28,64)(7,50,30)(9,32,52)(11,54,18)(13,20,56)(15,58,22)(33,89,77)(35,79,91)(37,93,65)(39,67,95)(41,81,69)(43,71,83)(45,85,73)(47,75,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,78,9,70)(2,77,10,69)(3,76,11,68)(4,75,12,67)(5,74,13,66)(6,73,14,65)(7,72,15,80)(8,71,16,79)(17,41,25,33)(18,40,26,48)(19,39,27,47)(20,38,28,46)(21,37,29,45)(22,36,30,44)(23,35,31,43)(24,34,32,42)(49,85,57,93)(50,84,58,92)(51,83,59,91)(52,82,60,90)(53,81,61,89)(54,96,62,88)(55,95,63,87)(56,94,64,86)>;
G:=Group( (2,25,61)(4,63,27)(6,29,49)(8,51,31)(10,17,53)(12,55,19)(14,21,57)(16,59,23)(34,90,78)(36,80,92)(38,94,66)(40,68,96)(42,82,70)(44,72,84)(46,86,74)(48,76,88), (1,24,60)(3,62,26)(5,28,64)(7,50,30)(9,32,52)(11,54,18)(13,20,56)(15,58,22)(33,89,77)(35,79,91)(37,93,65)(39,67,95)(41,81,69)(43,71,83)(45,85,73)(47,75,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,78,9,70)(2,77,10,69)(3,76,11,68)(4,75,12,67)(5,74,13,66)(6,73,14,65)(7,72,15,80)(8,71,16,79)(17,41,25,33)(18,40,26,48)(19,39,27,47)(20,38,28,46)(21,37,29,45)(22,36,30,44)(23,35,31,43)(24,34,32,42)(49,85,57,93)(50,84,58,92)(51,83,59,91)(52,82,60,90)(53,81,61,89)(54,96,62,88)(55,95,63,87)(56,94,64,86) );
G=PermutationGroup([[(2,25,61),(4,63,27),(6,29,49),(8,51,31),(10,17,53),(12,55,19),(14,21,57),(16,59,23),(34,90,78),(36,80,92),(38,94,66),(40,68,96),(42,82,70),(44,72,84),(46,86,74),(48,76,88)], [(1,24,60),(3,62,26),(5,28,64),(7,50,30),(9,32,52),(11,54,18),(13,20,56),(15,58,22),(33,89,77),(35,79,91),(37,93,65),(39,67,95),(41,81,69),(43,71,83),(45,85,73),(47,75,87)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,78,9,70),(2,77,10,69),(3,76,11,68),(4,75,12,67),(5,74,13,66),(6,73,14,65),(7,72,15,80),(8,71,16,79),(17,41,25,33),(18,40,26,48),(19,39,27,47),(20,38,28,46),(21,37,29,45),(22,36,30,44),(23,35,31,43),(24,34,32,42),(49,85,57,93),(50,84,58,92),(51,83,59,91),(52,82,60,90),(53,81,61,89),(54,96,62,88),(55,95,63,87),(56,94,64,86)]])
Matrix representation of C32⋊Q32 ►in GL6(𝔽97)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 96 | 1 |
0 | 0 | 0 | 0 | 96 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 96 | 1 | 0 | 0 |
0 | 0 | 96 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
95 | 71 | 0 | 0 | 0 | 0 |
26 | 95 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 96 |
0 | 0 | 41 | 15 | 0 | 0 |
0 | 0 | 82 | 56 | 0 | 0 |
40 | 40 | 0 | 0 | 0 | 0 |
40 | 57 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(97))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,96,96,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,96,96,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[95,26,0,0,0,0,71,95,0,0,0,0,0,0,0,0,41,82,0,0,0,0,15,56,0,0,1,1,0,0,0,0,0,96,0,0],[40,40,0,0,0,0,40,57,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C32⋊Q32 in GAP, Magma, Sage, TeX
C_3^2\rtimes Q_{32}
% in TeX
G:=Group("C3^2:Q32");
// GroupNames label
G:=SmallGroup(288,384);
// by ID
G=gap.SmallGroup(288,384);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,112,85,120,254,135,142,675,346,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^16=1,d^2=c^8,a*b=b*a,c*a*c^-1=d*a*d^-1=b,c*b*c^-1=a^-1,d*b*d^-1=a,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊Q32 in TeX
Character table of C32⋊Q32 in TeX